If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-80X-68000=0
a = 1; b = -80; c = -68000;
Δ = b2-4ac
Δ = -802-4·1·(-68000)
Δ = 278400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{278400}=\sqrt{1600*174}=\sqrt{1600}*\sqrt{174}=40\sqrt{174}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-40\sqrt{174}}{2*1}=\frac{80-40\sqrt{174}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+40\sqrt{174}}{2*1}=\frac{80+40\sqrt{174}}{2} $
| 1/4(8x-20)=1/3(5x-6) | | X(x+6)=18.3 | | 5.2k=3 | | _3÷7+x=17÷7 | | (5x+3)/2+1=5 | | X×-2+13=(x-7)×3 | | 2(4–3x)+5(2x-3)=20-5x | | (x+3)/6-4=-5 | | 2/3x=-13/12x-5/12x | | 2/3x=-13/12x-5/12 | | 5x-500=50 | | 7/5w/4/10w= | | 3x-21=-2x+13 | | 18x+5-4x=35 | | 7x+28=32 | | (2x-1)^2=(x+1) | | x+x+9=77 | | 4x^2+x-11=3 | | x+10=1÷2(4x+10) | | 13+4y=29 | | 2(x+5)=230 | | 9x+8=x-16 | | 19x-11=17x+3 | | 4-3(x+2)+x=5(x-1)-8x | | 5(10-y)-y=2 | | x+x+13=61 | | 2(x-3)+9=13 | | 12x^2-17x-18=0 | | .11375=2+(p-25)/25 | | x+x+12=66 | | 4.8=3.2x+25.6 | | (3-x)^5+(x-5)^5=-32 |